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Abstract. It is shown how to couple non-rel?livistic matter with a ChemSimons gauge field 
that belongs to a noncompact group. We treat in some detail the semi-.cimple SL(2, E) and 
the non-semi-simple Poincare ISO(2,l) groups. For suitable self-interactions, we are able to 
exhibit soliton solutions which obey self-dual equations. 

1. Introduction 

The interaction of non-relativistic planar matter fields with ChernSimons gauge fields has 
been extensively studied in recent years [l]. When self-interactions are suitably chosen, and 
the gauge group is compact, the system admits static solutions fulfilling a set of self-dual 

~equations. The completeness of these static solutions has been discussed in [Z]. A natural 
question addresses the generalization to more general gauge groups. In this paper we present 
a framework that encompasses models with compact as well as non-compact and non-semi- 
simple gauge groups. In section 2 we generalize the notion of a KiIling form that we 
need to define the system. In section 3 we show that the reduction of~the four-dimensional 
Yang-Mills self-dual equations leads to static solutions of our problem, provided the matter 
fields are taken in the adjoint representation. In section 4 we treat as examples the semi- 
simple SL(2R) group and the non-semi-simple Poincar.5 group, ISO(2.1). In both cases, 
special ansatze give explicit ,solutions to the static problem. Concluding remarks are given 
in section 5. while an appendix recalls some us,eful tools in Lie algebra theory. 

2. Generalization to non-compact Lie algebras 

Let us first recall the form taken by the Lagrangian density in the case of compact Lie 
algebras (i.e. Lie algebra of a compact Lie group): 

[Tal are the generators of the algebra and trT,Tb c( Job is its-Killing form. As usual, 
0, = a, +Ao, D = 6'-A are the covariant derivatives, and the matter field $ is an n-tuplet 
that transforms according to some finite-dimensional representation of the group. In the 
generalization of this expression, we preserve the two menproperties of j" d3xL, namely its 
reality and its gauge invariance. In order to do so we replace the Killing form and the inner 
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product in the representing vector space by suitable non-degenerate, Hermitian (for reality) 
and invariant (for gauge invariance) bilinear forms. Finite-dimensional representations of 
non-compact groups cannot be unitary; hence we do not expect these forms to be positive 
definite. Moreovcr, they do not exist in every representation (see appendix). 

Suppose that the adjoint representation possesses such a bilinear form denoted by (z, Tb)adj = finb. Suppose also that the matter fields belong to some representation with 
its own bilinear form (, ). If Gab is the inverse matrix of &,, the natural generalization of 
equation (1) is 

.C = $K@' (Am, apA, + fMa ,  + W ,  D N  - $J11.,011.) 

- iL? x(11.3 To'k)nub($'. Tb'k). (2) 
a,b 

Then most of the discussion in [l] can be followed in this more general case. 
The equations of motion read (€12 = 1): 

i 
Fiy = - a,AE f [A,, Ay]' = --aab($, Tb$) (34 

FZ Z ; E i j Q u b  ((11.3 TbDj@) - (Dj11.T Tb'b)) (3b) 

(3d 

Taking equation (3a) as a definition of A, the last equation can also be derived fiom the 
Hamiltonian: 

K 

1 

ia,@ = -4~~11. - iAo11. + g($, T.$)QobTb@. 

1 
H = Z J d 2 r  ((0@,0@) +g(@, Ta!!')Qab(+?Tb'k)) 

(4 )  
=L/"d2r((D611.,Dtl/l)+ 2 ( g + E -  9 (ll..,T,ll.)Qab(ll.,Tb@) ) 

where the last equality involves the definition 0, 
of a boundary term. 

Dz + ieDy ( E  = i) and the discarding 

We can list the other conserved quantities generating symmetries in the system 111: 

pi = dZrTO' momentum 

angular momentum 

s 
J 1 d2rs..riToj 1J 

G' = iP' - d2rr'(+, 11.) Galilean boost (5) 

dilation 

s 
ls 

D = t H  - - 
2 

dZrr'Toi 

conformal weight, K = -tZH + 2 tD + 
In this system the momentum density To' corresponds to a current: 

To' = -i ((11.. D i e )  - (Di11., 11.)) /2. 
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For static solutions, we deduce from the above that Pi, D and especially H have to vanish. 
With the special choice g = - -E/K,  the condition H = 0 is realized if @ fulfils the first-order 
differential equation 

De@ = 0. (7) 

It is easy to see that the solutions of equations (3a) and (7). together with 

(8) 
i 

A: = - E - Q " ~ ( @ ,  G+) 
2 K  

are time-independent solutions of equation (3). But, unlike the compact case, the converse 
is not true. Indeed, if (, ) is non-positive definite (as in the non-compact case) we cannot 
conclude that equation (7) is the only way to achieve H = 0 in equation (4). 

3. Redudion of the Yang-Mills self-dual equation 

It has already been pointed out that static solutions of a ChernSimons system are closely 
related to a reduction of a self-dual equation expressed in four dimensions. This section 
provides a derivation of this fact for arbitrary Lie algebras. We use either the O(4) or the 
O(2, 2) invariant metric to raise and lower indices. The self-dual Yang-Mills equation is 
(€1234 = 1) 

F f l Y  = l,W@F 2 ep F~~ = auwp -w, +w,, wPi (9) 

W, being the gauge potentials with value in the' Lie algebra [3]. .The reduction to two 
dimensions is achieved by imposing translation invariance with respect to x3 and x4 [4]. 
Take K positive and write 

x = x  y = x  - 
A, = w, A, = w, a = - , / i K ( W 3  + iw4). 

In these variables and with the definitions a+ ~= a, ?c ia,, A* = A, f iA, and D, as in 
equation (4), equation (9) reduces to 

&A+ - a+A- + [A-, A+] = (2/K)[G, VI (114 

D,Y = 0 ( 1 W  

where in the last equation E is correlated with the metric: E = +1 for 0(4), and E = -1 

Introducing A+ = A+ + m y ,  .A- = A- - "& we see that if (and only i f )  
for O(2, 2). 

E = -1, equations (11) are equivalent to a zero curvature condition 

?LA+ - a+A- + [A-, A+] = 0. (12) 

For compact groups, Dunne [2] has found.explicitly all the solutions of this last equation. 
However, it is not clear whether this construction works for non-compact groups. Nahely, 
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equation (12) is solved in a matrix representation and the solution is a matrix which does 
not necessarily belong to the algebra in which we are interested. For example, we are not 
able to exhibit a solution by this method for the ISO(2 ,  1) case. 

We observe that the reduced self-dual equations (11) are the same as equations (3a) and 
(7) provided we take the matter fields in the adjoint representation, i.e. 

Henceforth we shall work with this representation. Moreover, in the compact case, only the 
choice E = -1 leads to regular solutions. In that case, equation (12) is relevant and one can 
follow the general discussion in [l] involving chiral cuments and give explicit solutions. 
But in the non-compact case, different signs conspire to ensure the existence of regular 
solutions only in the opposite case, E = +1, where equation (12) is no longer valid. In our 
following illust-ations we shall only consider this case. 

4. Soliton solutions in the adjoint representation 

We now take two examples of non-compact groups: the semi-simple SL(2, R) and the 
non-semi-simple I S O ( 2 ,  1). The matter field is in the adjoint representation and we shall 
present different ansa% to solve the self-dual equations with E = 1. 

4.1. The SL(2,  R) case 

As discussed in the appendix, the adjoint representation carries a Killing form 52 = 
diag(1, -1, -1). In order to obtain simple differential equations from equation (11)- 
namely to avoid the commutator on the left-hand side-we 'uy a solution with the gauge 
field A in a maximal commutative subalgebra; there are two possible choices: A M .IO and 
A M .I2 (01 51). 

Let us first try the following ansatz: 

0 1 1 Y = U  J ~ + u * - ( J ~ + ~ J ~ ) + u - - ( J I - ~ J ~ )  A+=wJo. (14) .Jz 45 
If U+ is non-zero, the self-dual equations (with 6 = 1) become 

a+(u+u-) = 0 w = ia+ Inu+ (15a) 0 U = o  

VZln /U+/' = -- (/U+/' - / u - / ~ ) .  (15b) 
2 
K 

We know [l] that regular solutions are found only if U- = 0. The last equation is then the 
Liouville equation for the norm of U+. Its phase is fixed (up to a gauge transformation) by 
requiring regularity for W .  The radially symmetric solutions are 
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This solution carries an angular momentum J = - K ~ N  and a conformal weight K = 
-ZK$COS~C(Z/N) (note the opposite sign with respect to the compact SU(2) case). With 
the other choice for E we would have found the opposite sign in the Liouville equation 
leading to no regular solution. 

Consider now the other possibility: 

The self-dual equations become 

u+u- = q x - 1  

= a+ Inu+ 

with an a rb i t rq  complex function C(x- ) .  The combination r$ = 2arg U+ + arg C obeys 
the sineGordon equation in Euclidean space: 

L 

K 
0'6 = --IC[ sin@. (19) 

To solve it explicitly we take C constant and we find 'multi-kink' solutions, regular 
everywhere [5 ] .  However, they do not lead to a function w decreasing at infinity, unless 
C = 0. In that case the solution is 

@ =constant U+ = lu+iel~ w = a+ In ~ u + j  . (20) 

which is gauge equivalent to the trivial solution U+ = w = 0 and thus gives no new soliton 
solution. 

Equation (16) gives regular radially symmetric solutions. In the compact SU(2) case, 
the gauge field is chosen in the Cartan subalgebra and this choice, in fact, gives all the 
regular solutions [2]. It is striking to note that, here, the Cartan subalgebra corresponds to 
the first case, A o( Jo, the other one leading to trivial solutions. This similarity with the 
compact SU(2) case is probably related to the fact that SL(2, R) is a real form of SU(2)@. 
We also expect that all regular radially symmetric solutions are obtained through ansatz 
(14). 

4.2. The I S O ( 2 , l )  c u e  

The Poincark group is an example of a non-compact and non-semi-simple Lie group. The 
six generators and the bilinear form S2 of the adjoint representation are described in the 
appendix. For simplicity, we try to take the gauge field in a maximal Abelian subalgebra. 
Again we have two possibilities. Let us make the first ansatz: 

1 + v--(P, - iPz) Jz 
A+ = WJO + e'Po 
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Always with E = 1, the self-dual equation implies for U+, U- and w the same equations 
(15) as in the previous example. Regular solutions were obtained only with U- = 0. With 
this condition the other equations are 

U0 = U0 = 0 (7-24 

eo = ia+ (g) 
a+(u+v-) = 0. ( 2 2 4  

At first sight it seems that there are not enough conshaints, as equation (22b) determines 
the real part of (u+/u+) but eo in equation (22c) also depends on its imaginary part. 
Nevertheless, by a gauge transformation we can always shift eo by the total derivative of a 
regular and real quantity and set the imaginary part of (u+/u+)  to what we want. We have 
used the same kind of reasoning to determine the phase of U+. 

We recognize equation (22b) as the deformation of the Liouville equation (15b) (with 
U- = 0). Namely, if Iu+Iz = ln(1 + 14l2) is the general solution involving some analytical 
function @(x+), we find the solutions of equation (226) by making an arbitrary deformation 
4txX+) + 4 ( X + ) ( l  +€w+)): 

In the ‘radially symmetric’ case-with @ ( x + )  o( ( x + ) - ~  and $(x+) cx (x+)M-equation 
(23) reads: 

The gauge freedom we have allows a convenient choice for its imaginary part: 

where we have used the expression (16a) for U+. Equation (22c) then gives 

In order to avoid singularities at r = 0 and r = 03 we have to restrict the integer values of 
M to 1 - N < M < 1 + N .  
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Finally, equation (2%) is trivially solved by U- = f ( x - ) / u + .  As the ‘radially 
symmetric’ choice we take f(Z) = Z“ and the regular solution is 

with an integer L 2 N. Equations (16), (25)-(27) together with uo = uo = U- = 0 give a 
soliton solution to OUI self-dual problem. 

In fact, it is possible to consider a more general ansatz with the gauge field in a larger 
subalgebra than the maximal Abelian one: 

1 1 
A+ =oJo+eoPo+e+-(P1 + i P z ) + e - - ( P l  -iPz). 

1/z 1/z 
First of all we remark that, since the commutators of Jo, PO with PI, PZ onlyproduce P I .  
PZ terms, the gauge choice previously made for w ,  eo can still be achieved. Moreover, 
a gauge transformation parallel to PI ,  P2 transforms e’, e- like (A is a regular complex 
function): 

e+ --f e+ + a+A + i o n  

e- --f e- + a+A* - iwA*. 

while leaving w ,  eo unchanged. Thus in a suitable gauge we can also take e+ = 0. 

equations for the two unknown functions uo, e- look rather simple: 
For U+, U+, U-, w ,  eo the equations are similar to the previous ones. The two remaining 

(30) + -la 0 e- = (U +U . a+(a-$ - voa- Inlu+l*) = o 
The first one is integrated with the help of two arbitrary functions: 

As an explicit example we choose CZ = 0, a constant CI and the ‘radially symmetric’ case: 

If we choose the gauge field in another direction in the algebra (e.g. A cx Jz) we would 
find the same trivial solution as in the SL(2, R) example. The set of equations (16), (25)- 
(27), (32) gives a large class of soliton solutions in the rSU(2 ,  1) case. However, the 
conserved quantities (5) give nothing interesting on these solutions. Namely the non-trivial 
ones are given here by 

But due to the angular dependence of R(u+/u+) (cf equation (U)), J = K = 0 and G’ is 
non-vanishing only for the integer M = 1, where eo is radially symmetric. 



2952 D Cangemi 

5. Conclusion 

We have shown how to couple non-relativistic matter to non-compact ChernSimons theory. 
This is not always possible since the maner field must be in a representation that carries 
an invariant bilinear form. In that case, static equations are nicely related to the reduction 
of the four-dimensional Yang-Mills self-dual equations. Non-trivial and regular solutions 
are obtained by specific ansztze where the gauge field is restricted to some subalgebra. In 
the compact case, it is enough to consider the Cartan subalgebra, i.e. the maximal compact 
and Abelian subalgebra. This still seems to hold with SL(2, R). However, with ISO(2 ,  I), 
we have found explicit solutions taking the gauge field in a subalgebra, which was neither 
Abelian nor compact, cf equation (28). 

The presence of these solitons can be useful to understand Euclidean gravity in two 
dimensions as a reduction of a Chern-Simons system in three dimensions. Although the 
matter is taken as non-relativistic, this study can also give some insight into the question 
of coupling matter, in a gauge-invariant form, to 2 + 1 gravity seen as a Chern-Simons 
theory. Moreover, this study provides a good example where a simple physical system 
with higher symmetries leads to interesting mathematical objects like the sineGordon or 
the Toda equations. 
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Appendix 

In this appendix we discuss the existence of non-degenerate, Hermitian and invariant bilinear 
forms in a finite-dimensional representation of a Lie algebra. If U ,  U belong to a representing 
vector space and if the generators of the Lie algebra act on them by U + Tu, we are looking 
for a non-degenerate bilinear form (, ) such that 

(U. U) = (U, U)' (TU, U) + (U. Tu)  = 0. (AI) 

In matrix notation we write (U, U) = (um)*C2,,u" with (amn) invertible and 

Qi=Q T i  = -QTW'. (A2) 

If the algebra is semi-simple, the adjoint representation carries such a form: the Killing 
form. But for non-semi-simple or for other representations this is not always true. 

Let us consider the following examples. 
(A) A compact, semi-simple Lie algebra like SU(n). All irreducible representations are 

(B) A non-compact, semi-simple Lie algebra. Our prototype is SL(2, R): 
unitary, thus in all representations C2 N I .  

[Ja, Jb1 E (A3) 
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With a ,  6 ,  c = 0, 1,2, €012 = 1, cCab = ?fC'E&, qQb = diag(1, -1, -1). In the three- 
dimensional adjoint representation we have the Killing form 0 = diag(1, -1, -1). In the 
two-dimensional fundamental representation 

1 1 0  1 0 1  0 1  
J o = - (  2 0 -1 ) " = -  2 1 0  ( ) J z =  .! 2 ( -1 0 ) (A4) 

we have 0 = 2i Jo. 

ZSO(2, 1) (a ,  b, c = 0,1,2): 
(C) A non-compact, non-semi-simple Lie algebra. Here we consider the Poincar6 algebra 

[ J a ,  JbI = EcabJc [ J a ,  pb1 = EcabPc ' [pa, %I = 0. (-45) 

In the six-dimensional adjoint representation, it turns out that there is still a bilinear form 
with'the good properties (which is not the Killing form): 

( J a ,  Jb)adj = c l % b  ( J a ,  %)adj = CZ%b (CZ # 0) (A@ 

with 7Jab being the diagonal matrix diag(1, -1, -1). But this is not true in all representations. 
For example, in the four-dimensional fundamental one (with .?, given by (A4)): 

J. = Po = 

0 0 0 0  0 0 0 0  

0 0 0 0  0 0 0 0  

we cannot find an invertible matrix C2 with the properties (AZ). On the other hand, there is 
another four-dimensional representation given in term3 of 4 x 4 gamma matrices r A  ( A  = 
0,1,2,3) of the four-dimensional Minkowskian space ( F A  = V A B r ' ,  r5 = i ro r1 rz r3 ) :  

which carries the bilinear form Q = ro. 
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